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Sources

What Makes Data Suitable for a Locally Connected Neural Network? A Necessary 
and Sufficient Condition Based on Quantum Entanglement

Yotam Alexander + Nimrod De La Vega + Noam Razin + C

arXiv

On the Ability of Graph Neural Networks to Model Interactions Between Vertices
Noam Razin + Tom Verbin + C

arXiv
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Outline

• The Role of Data Distributions in Deep Learning

• An Appeal to Quantum Physics

• Characterization of Data Suitable for Neural Networks

• Conclusion
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Approach

Predetermine hypotheses space and return  that minimizes 
empirical loss:

– label space

– instance space

Statistical Learning Setup

Task

Given training set drawn i.i.d. from     , return hypothesis

that minimizes population loss:

– distribution over (unknown) 

– loss function
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Three Pillars of Statistical Learning Theory:
Expressiveness, Generalization and Optimization

(hypotheses space)

(all functions)

– ground truth (minimizer of population loss over        ) 

– optimal hypothesis (minimizer of population loss over     ) 

– empirically optimal hypothesis (minimizer of empirical loss over     ) 

– returned hypotheiss

Approximation Error
(Expressiveness)

Training Error
(Optimization)

Estimation Error
(Generalization)
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Deep Learning

Overparameterized deep neural networks (DNNs) trained via gradient descent (GD) yield 
unprecedentedly low population loss

Training error: GD on overparameterized DNN converges to global min with arbitrary data 
distribution (Jacot et al. 2018, Du et al. 2019, Allen-Zhu et al. 2019, Zou et al. 2020)

Approximation error: poly-sized DNN can express hypothesis with low population loss only for 
some data distributions (Telgarsky 2016, C et al. 2016)

Estimation error: GD on DNN leads to optimal population loss only for some data distributions
(Shalev-Shwartz et al. 2017, Abbe & Sandon 2018)

# of learned weights training set size

≫

low training error low estimation error

low approximation error

hypotheses space

all functions

What makes a data distribution lead to low approximation/estimation error?
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Why Study Suitability of Data for Deep Learning?

Aside from scientific curiosity, can lead to practical methods for:

• Adapting data to neural networks (NNs)

• Adapting NNs to data
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Our Focus: Suitability of Data in Terms of Expressiveness

We focus on expressiveness

Existing literature: 

• Restrictive sufficient conditions on data distribution

• Missing characterizations with necessary and sufficient conditions

(folklore results, Telgarsky 2016, Zhang et al. 2017)

low training error low estimation error

low approximation error

hypotheses space

all functions
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Quantum Physics

Discipline that also ties distributions with computational models

Distribution

Computational
model

Deep learning Quantum physics

Data Tensor

NN Tensor network
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Tensors and Tensor Networks

Tensor – multi-dimensional array

Tensor network (TN) – graph in which: 

vertices tensors edges axes

scalar vector matrix 3-dim tensor

edge connecting two vertices (tensors) represents contraction

inner product matrix multiplication
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Assessing Suitability of Distribution to Computational Model

Distribution

Computational
model

Deep learning Quantum physics

Data Tensor

NN

Theory for suitability
of distribution to model

TN

based on 
quantum entanglement
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Quantum Entanglement

Quantifies dependencies that tensor admits under partitions of its axes

Let and   

– arrangement of      as matrix with axes in     unrolled as rows

– distribution induced by singular values of

(entropy of           ) 
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• The equivalent NNs are competitive empirically

• Neural TNs enabled analyses of expressiveness and implicit regularization in deep learning

• The analyses led to insights and practical tools for widespread NNs

(C et al. 2016b, C & Shashua 2017, Levine et al. 2018, Khrulkov et al. 2018, Razin et al. 2021;2022)

Neural Tensor Networks

(C et al. 2016b, C & Shashua 2017, Levine et al. 2018, Khrulkov et al. 2018, Razin et al. 2021;2022)

(C et al. 2016a, Stoudenmire 2018)
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We study TNs equivalent to NNs with multiplicative non-linearity

Why?



Data Tensor
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Classification Setting:

input elements (e.g. audio 
samples, text tokens)

Given training set

Data tensor:

, define:

outer product

• Instance space

• Label space

Each subset of features     induces a quantum entanglement

axes correspond to features

can be computed efficiently



Locally Connected Neural Networks (Theorem)
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d d d

Theorem (informally stated)

A locally connected NN has low approximation error if and only if 
                is low for every canonical subset of features
 

Canonical subsets of                   :



Locally Connected Neural Networks (Proof Sketch)
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d d d

Theorem (informally stated)

A locally connected NN has low approximation error if and only if 
                is low for every canonical subset of features
 

Proof Sketch

NN has low approximation error equivalent TN can fit expected data tensor

TN equivalent to locally connected NN can fit

is low for every canonical subset

W.h.p. for every subset

Quantum physics theory:



Locally Connected Neural Networks (Experiments)
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Empirical Demonstration Practical Application 

Improving accuracy of locally connected NNs 
by arranging features such that                  is 
low for all canonical subsets

d d d

Theorem (informally stated)

A locally connected NN has low approximation error if and only if 
                is low for every canonical subset of features
 



Graph Neural Networks (Theorem)
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d d d

Theorem (informally stated)

If a graph NN has low approximation error, then for each 
subset of features    :
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# of walks in input graph emanating from boundary of



Graph Neural Networks (Proof Sketch)
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d d d

Theorem (informally stated)

If a graph NN has low approximation error, then for each 
subset of features    :

Proof Sketch

NN has low approximation error equivalent TN can fit expected data tensor

TN equivalent to graph NN can fit

for every subset

W.h.p. for every subset

Quantum physics theory:



Graph Neural Networks (Experiments)
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Practical Application

d d d

Theorem (informally stated)

If a graph NN has low approximation error, then for each 
subset of features    :

Algorithm for edge sparsification that preserves accuracy of graph NN:

• Select subsets for which                  is high compared to

• Prune edge whose removal reduces for selected the least  

Code



Outline

• The Role of Data Distributions in Deep Learning

• An Appeal to Quantum Physics

• Characterization of Data Suitable for Neural Networks

• Conclusion

24 / 27



low training error

hypotheses space

all functions

low estimation error

low approximation error

Rely on properties 
of data distribution

low training error

hypotheses space

all functions

low estimation error

low approximation error

Rely on properties 
of data distribution

Recap
Overparameterized DNNs trained via GD yield unprecedently low population loss

Locally Connected NNs

• Theory: accurate prediction is possible if and only if data admits low entanglement under canonical subsets

• Practical application: enhancing suitability of data via feature arrangement

GNNs

• Theory: accurate prediction is possible only if walk indices surpass entanglements

• Practical application: sparsifying architectures (input graphs) according to data
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We study this via tools 
from quantum physics



Reasoning About Natural Data via Physics

Deep learning is most commonly applied to data modalities regarded as natural

Difficult to formalize since we lack tools for reasoning about natural data

Images Text Audio
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Hypothesis: physics will be key to overcoming this difficulty



Thank You!
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